
Eclipse: A platform
for integrating
development tools

by J. des Rivières
J. Wiegand

Modern n-tier applications are developed
using components implemented in many
different technologies, including HTML,
Java™, JavaServer Pages™ (JSP™),
Enterprise JavaBeans™, connectors, COBOL
or PL/1 programs, and relational database
schemas. Creating an effective integrated
development environment (IDE) for use in
programming these applications presents
some special challenges because a large
number of different tool technologies have to
be tightly integrated in support of
development task flows. In order to meet
these challenges, the Eclipse Platform was
designed to serve as the common basis for
diverse IDE-based products, providing open
APIs (application programming interfaces) to
facilitate this integration. This paper describes
the overall architecture of the Eclipse Platform
and the www.eclipse.org open source
organization and consortium created to
facilitate broad industry adoption of this
platform.

Customers developing applications need a variety of
different tools from various tool vendors to support
the full software development life cycle. Develop-
ers can be more productive and effective if these tools
work well together. Integrated development environ-
ments (IDEs) can aid in the integration of tools to
facilitate the software development process and will
succeed in doing so to the extent that the commu-
nity of tool developers can be influenced to develop
tools in ways that increase the likelihood of their in-
teroperation with other tools.

The Eclipse Platform was created to address this is-
sue by providing a common platform for diverse IDE-
based products and facilitate their integration. The
first part of this paper introduces and gives an his-
torical perspective of IDEs, followed by a description
of the technical aspects of the Eclipse Platform. In
the second part, we discuss the efforts of the Eclipse
community of tool developers to make the Eclipse
Platform ubiquitous.

A brief history of commercial IDEs. In the early days
of programming, the only software development
tools that programmers really needed were a com-
piler for the language they were programming in and
a link editor and loader to combine the compiled
files into executable form. Programs were composed
offline; debugging was done primarily with output
statements inserted in the code. With the advent of
time-sharing, programs started to be written and de-
bugged interactively by using the computer as well.
The earliest commercial IDEs were built for the pro-
gramming languages BASIC1 and APL.2 The Emacs
editor3 is arguably the first language-neutral, exten-
sible IDE, and to this day it maintains a loyal follow-
ing who prefer it to the GUI (graphic user interface)
-based IDEs that followed it.

The rise of personal computers saw the creation of
a number of commercial IDEs geared towards pop-

�Copyright 2004 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 0018-8670/04/$5.00 © 2004 IBM DES RIVIÈRES AND WIEGAND 371



ular programming languages, including Pascal (e.g.,
Borland Turbo Pascal**4), LISP (e.g., Xerox Inter-
lisp5), Smalltalk (e.g., PARCPlace Smalltalk6), and
C�� (e.g., Lucid Energize7). By the early 1990s, an
IDE was standard fare for most programming lan-
guages. When the Java** programming language ar-
rived in 1995, the market was soon flooded with Java
IDE products, including Borland JBuilder**,8 Syman-
tec Visual Café, 9 Microsoft Visual J��**,10 and
IBM VisualAge* for Java.11

The use of IDEs is prevalent for one simple reason:
they make software developers more productive. Be-
cause of this utilitarian appeal, IDEs continue to
evolve as people find new ways to improve produc-
tivity. Over time, the set of tools integrated into the
IDE has expanded from simple editors, compilers,
and debuggers to include incremental compilers,
browsers that present the program in meaningful
ways (e.g., classes and methods arranged in a sub-
class hierarchy), automatic code completion, and vi-
sual editors for creating graphical UIs (user inter-
faces). This trend towards more sophisticated and
powerful language-specific tools continues,12 and
nowadays includes facilities like built-in editor sup-
port for re-factoring code.

Another way to improve productivity is for the IDE
to cover more of the software development life cy-
cle. For example, most commercial IDEs include op-
tional version and configuration management for
source code files because this is a key concern for
working programmers. IDEs are rapidly expanding
into the other areas, such as software design with
UML** (Unified Modeling Language) modeling tools
(e.g., Rational Rose**13).

In reality, working programmers usually do much
more than write and debug code in a single program-
ming language. It is commonplace for a program-
mer to create and manipulate many non-code arti-
facts such as HTML (Hypertext Markup Language)
pages. This means that the programmer ends up us-
ing additional tools not integrated with the IDE. In
order to address these needs, most modern commer-
cial IDEs are designed to be open and extensible so
that new tools can be supplied by third parties (i.e.,
someone other than the IDE vendor). This is done
by providing a mechanism for the IDE to discover
add-in tools on start up, and by publishing APIs (ap-
plication programming interfaces) for use by these
tools to integrate their functions with the IDE. For
example, Borland JBuilder has an Open Tools API,
and IntelliJ** IDEA has a product called Plug-in

API.14 This kind of open-ended extensibility is essen-
tial in the commercial IDE arena because no IDE ven-
dor could possibly provide a sufficient set of useful
tools to satisfy all customer needs. Which third party
tool will be bundled as an add-in for a particular IDE
is determined by market forces.

Some IDEs start from a language-specific base and
expand from there. For instance, Oracle JDeveloper
Suite**15 is a Java-centric IDE which expanded into
UML modeling, well beyond a narrow Java focus. Net-
Beans** IDE16 started as Java-specific, but later
evolved into a language-neutral, open source IDE that
is used within commercial IDE products, including
Sun ONE Studio.17 Microsoft Visual Studio** .NET18

supports multiple languages within the same IDE and
provides extensive language-neutral as well as lan-
guage-specific APIs for use by tools. In the effort to
expand their horizons, IDEs must overcome any lan-
guage-specific biases which may have been built into
them.

Eclipse Platform technical overview

In the following section, we give a high-level descrip-
tion of the Eclipse Platform.19 The Eclipse Platform
is an open-ended, language-neutral IDE. The open
source Eclipse Platform 1.020 was released in late
2001 and began appearing in commercial products
shortly thereafter, the first being IBM WebSphere*
Studio Application Developer 4.0.21 The Eclipse
Platform is aptly described as “an IDE for anything
and for nothing in particular.”

Figure 1 shows a screen capture of the main work-
bench window as it looks with only the standard ge-
neric components that are part of the Eclipse Plat-
form. The Navigator view (Figure 1, top left) shows
the files in the user’s workspace; the text editor (top
right) shows the contents of a file; the Tasks view
(bottom right) shows a list of to-dos; the Properties
view (bottom left) shows various properties of the
file selected in the Navigator view.

Although the Eclipse Platform has much built-in
functionality, most of that functionality is very ge-
neric. It takes additional tools to extend the platform
to work with new content types, to do new things with
existing content types, and to focus the generic func-
tionality on something specific. The Eclipse Platform
is built on a mechanism for discovering, integrating,
and running modules called plug-ins. A tool provider
writes a tool as a separate plug-in that operates on

DES RIVIÈRES AND WIEGAND IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004372



files in the workspace and surfaces its tool-specific
UI in the workbench. When the platform is launched,
the user is presented with an IDE composed from
the set of available plug-ins. The quality of the user
experience depends significantly on how well the
tools integrate with the platform and how well the
various tools work with each other.

Platform design goals. The Eclipse Platform was de-
signed and built to meet the following requirements:

● Support the construction of a variety of tools for
application development.

● Support an unrestricted set of tool providers, in-
cluding independent software vendors (ISVs).

● Support tools to manipulate arbitrary content types
(e.g., HTML, Java, C, JSP** [JavaServer Pages**],
EJB** [Enterprise JavaBeans**], XML [eXtensible
Markup Language], and GIF [Graphic Interchange
Format]).

● Facilitate seamless integration of tools within and
across different content types and tool providers.

● Support both GUI and non-GUI-based application
development environments.

● Run on a wide range of operating systems, includ-
ing Windows** and Linux**.

● Capitalize on the popularity of the Java program-
ming language for writing tools.

The Eclipse Platform�s principal role is to provide
tool providers with mechanisms to use and rules to
follow that lead to seamlessly integrated tools. These
mechanisms are exposed through well-defined API
interfaces, classes, and methods. The platform also
provides useful building blocks and frameworks that
facilitate developing new tools. Figure 2 shows the
major components and APIs of the Eclipse Platform.

Platform runtime and plug-in architecture. A plug-in
is the smallest unit of Eclipse Platform function that
can be developed and delivered separately. Usually
a small tool is written as a single plug-in, whereas
a complex tool has its functionality split across sev-
eral plug-ins. Except for a small kernel known as the

Figure 1 Eclipse Platform user interface

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 DES RIVIÈRES AND WIEGAND 373



Platform Runtime, all of the Eclipse Platform�s func-
tionality is located in plug-ins.

Plug-ins are coded in the Java language. A typical
plug-in consists of Java code in a JAR (Java archive)
library, some read-only files, and other resources
such as images, Web templates, message catalogs,
native code libraries, and so forth. Some plug-ins do
not contain code at all. One such example is a plug-in
that contributes on-line help in the form of HTML
pages. A single plug-in�s code libraries and read-only
contents are located together in a directory in the
file system. There is also a mechanism that permits
a plug-in to be synthesized from several separate
fragments, each in its own directory. This is the mech-
anism used to deliver separate language packs for
an internationalized plug-in.

Each plug-in has a manifest file declaring its inter-
connections to other plug-ins. The interconnection
model is simple: a plug-in declares any number of
named extension points, and any number of extensions
to extension points in other plug-ins. An extension
point may have a corresponding API interface. Other
plug-ins contribute implementations of this interface
through extensions to this extension point. For ex-
ample, the workbench plug-in declares an extension

point for user preferences. Any plug-in can contrib-
ute its own user preferences by defining extensions
to this extension point.

On start-up, the Platform Runtime discovers the set
of available plug-ins, reads their manifest files, and
builds a plug-in registry. The platform matches ex-
tension declarations by name with their correspond-
ing extension point declarations. Any problems, such
as extensions to missing extension points, are de-
tected and logged. The resulting plug-in registry is
available through the platform API. Plug-ins cannot
be added after start-up.

Plug-in manifest files contain XML. An extension
point may declare additional specialized XML ele-
ment types for use in the extensions. This allows the
plug-in supplying the extension to communicate ar-
bitrary information to the plug-in declaring the cor-
responding extension point. Moreover, manifest in-
formation is available from the plug-in registry
without activating the contributing plug-in or load-
ing any of its code. This property is critical to sup-
porting a large base of installed plug-ins, only some
of which are needed in any given user session. Until
a plug-in�s code is loaded, it has a negligible mem-
ory footprint and impact on start-up time. Using an
XML-based plug-in manifest file also makes it easier
to write tools that support plug-in creation. The
Plug-In Development Environment (PDE), which is
included in the Eclipse SDK (software development
kit), is such a tool.

A plug-in is activated when its code actually needs
to be run. Once activated, a plug-in uses the plug-in
registry to discover and access the extensions con-
tributed to its extension points. For example, the
plug-in declaring the user preference extension point
can discover all contributed user preferences and ac-
cess their display names to construct a preference
dialog. This can be done by using only the informa-
tion from the registry, without having to activate any
of the contributing plug-ins. The contributing plug-in
will be activated when the user selects a preference
from a list. Activating plug-ins in this manner does
not happen automatically; there are a small number
of API methods for explicitly activating plug-ins. Once
activated, a plug-in remains active until the platform
shuts down. Each plug-in is furnished with a subdi-
rectory in which to store data specific to the plug-in;
this mechanism allows a plug-in to retain important
state information between runs.

Figure 2 Eclipse Platform architecture

PLATFORM RUNTIME

WORKBENCH

WORKSPACE

JFACE

SWT

ECLIPSE PLATFORM

HELP NEW TOOL
PLUG-IN

NEW TOOL
PLUG-IN

NEW TOOL
PLUG-IN

TEAM

DES RIVIÈRES AND WIEGAND IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004374



The Platform Runtime declares a special extension
point for applications. When an instance of the plat-
form is launched, the name of an application is spec-
ified through the command line; the only plug-in that
gets activated initially is the one that declares that
application.

By determining the set of available plug-ins for
start-up and by supporting a significant exchange of
information between plug-ins without having to ac-
tivate any of them, the platform can provide each
plug-in with a rich source of pertinent information
about the context in which it is operating. This con-
text cannot change while the platform is running, so
there is no need for complex life-cycle events to in-
form plug-ins of context changes. A lengthy start-up
sequence is avoided, as are many bugs stemming
from unpredictable plug-in activation order.

The Eclipse Platform is run by a single invocation
of a standard JVM** (Java Virtual Machine). Each
plug-in is assigned its own Java class loader which
is solely responsible for loading its classes (and Java
resource bundles). Each plug-in explicitly declares
its dependence on the other plug-ins from which it
expects to directly access classes. A plug-in controls
the visibility of the public classes and interfaces in
its libraries. This information is declared in the
plug-in manifest file; the visibility rules are enforced
at runtime by the plug-in class loaders.

The plug-in mechanism is used to partition the
Eclipse Platform itself. Indeed, separate plug-ins pro-
vide the workspace, the workbench, and so on. Even
the Platform Runtime has its own plug-in. Non-GUI
configurations of the platform may simply omit the
workbench plug-in and the other plug-ins that de-
pend on it.

The Eclipse Platform�s update manager downloads
and installs new features or upgraded versions of ex-
isting features (a feature being a group of related
plug-ins that get installed and updated together). The
update manager constructs a new configuration of
available plug-ins to be used the next time the Eclipse
Platform is launched. If the result of upgrading or
installing proves unsatisfactory, the user can roll back
to an earlier configuration.

The Eclipse Platform runtime also provides a mech-
anism for extending objects dynamically. A class that
implements an “adaptable” interface declares its in-
stances open to third-party behavior extensions. An
adaptable instance can be queried for the adapter

object that implements an interface or class. For ex-
ample, workspace resources are adaptable objects;
the workbench adds adapters that provide a suitable
icon and text label for a resource. Any party can add
behavior to existing types (both classes and inter-
faces) of adaptable objects by registering a suitable
adapter factory with the platform. Multiple parties
can independently extend the same adaptable ob-
jects, each for a different purpose. When an adapter
for a given interface is requested, the platform iden-
tifies and invokes the appropriate factory to create
it. The mechanism uses only the Java type of the
adaptable object (it does not increase the adaptable
object�s memory footprint). Any plug-in can exploit
this mechanism to add behavior to existing adapt-
able objects and to define new types of adaptable
objects for other plug-ins to use and possibly extend.

Workspaces. The various tools which plug in to the
Eclipse Platform operate on regular files in the us-
er�s workspace. The workspace consists of one or
more top-level projects, where each project maps to
a corresponding user-specified directory in the file
system. The different projects in a workspace may
map to different file system directories or drives al-
though, by default, all projects map to sibling sub-
directories of a single workspace directory.

A mechanism in the Eclipse Platform allows a tool
to tag a project in order to give it a particular per-
sonality, or nature. For example, “Web site nature”
tags are associated with a project that contains the
static content for a Web site, and “Java nature” tags
are associated with a project that contains the source
code for a Java program. The project nature mech-
anism is open. Plug-ins may declare new project na-
tures and provide code for configuring projects with
that nature. A single project may have as many na-
tures as required. This affords a way for tools to share
a project without having to know about each other.

Each project contains files that are created and ma-
nipulated by the user. All files in the workspace are
directly accessible by the standard programs and
tools of the underlying operating system. Tools in-
tegrated with the platform are provided with APIs for
dealing with workspace resources (projects, files, and
folders). Workspace resources are represented by
adaptable objects so that other parties can extend
their behavior.

To minimize the risk of accidentally losing files, a
low-level workspace history mechanism keeps track
of the previous contents of any files that have been

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 DES RIVIÈRES AND WIEGAND 375



changed or deleted by integrated tools. The user con-
trols how the history is managed by means of space-
and age-based preference settings. The workspace
provides a marker mechanism for annotating re-
sources. Markers are used to record diverse anno-
tations, such as compiler error messages, to-do list
items, bookmarks, search hits, and debugger break-
points. The marker mechanism is open. Plug-ins can
declare new marker subtypes and control whether
they should be saved between runs.

The platform provides a general mechanism that al-
lows a tool to track changes to workspace resources.
By registering a “resource change listener,” a tool
is ensured to receive after-the-fact notifications of
all resource creations, deletions, and changes to the
contents of files. The platform defers the event no-
tification until the end of a batch of resource ma-
nipulation operations. Event reports take the form
of a tree of resource changes (or “deltas”) that de-
scribe the effect of the entire batch of operations in
terms of net resource creations, deletions, and
changes. Resource deltas also provide information
about changes to markers.

Resource tree deltas are particularly useful and ef-
ficient for tools that display resource trees because
each delta points out where the tool may need to
add, remove, or refresh on-screen widgets (small
graphic elements). In addition, because a number
of semi-independent tools may be operating on the
resources of a project at the same time, this mech-
anism allows one tool to detect the activity of an-
other in the vicinity of specific files or file types in
which it has an interest.

Tools like compilers and link checkers must apply
a coordinated analysis and transformation of thou-
sands of separate files. The platform provides an in-
cremental project builder framework. The input to an
incremental builder is a resource tree delta captur-
ing the net resource differences since the last build.
Sophisticated tools may use this mechanism to pro-
vide scalable solutions. The platform allows several
different incremental project builders to be registered
for the same project and provides ways to trigger
project- and workspace-wide builds. An optional
workspace auto-build feature automatically triggers
the necessary builds after each resource modifica-
tion operation (or batch of operations).

The workspace save-restore process is open to par-
ticipation from plug-ins wishing to remain coordi-
nated with the workspace across sessions. A two-

phase save process ensures that the important states
of the various plug-ins are written to disk as an atomic
operation. In a subsequent session, when an indi-
vidual plug-in gets reactivated and rejoins the save-
restore process, it is passed a workspace-wide re-
source delta describing the net resource differences
since the last save in which it participated. This al-
lows a plug-in to carry forward its saved state while
making the necessary adjustments to accommodate
resource changes made while it was deactivated.

Workbench and UI toolkits. The Eclipse Platform
UI is built around a workbench that provides the over-
all structure and presents an extensible UI to the user.
The workbench API and implementation are built
from two toolkits:

● SWT (Standard Widget Toolkit)—a widget set and
graphics library integrated with the native window
system but with an OS (operating system) -inde-
pendent API.

● JFace—a UI toolkit implemented using the SWT,
which simplifies common UI programming tasks.

Standard Widget Toolkit. The Standard Widget Tool-
kit (SWT) provides a common OS-independent API
for widgets and graphics implemented in a way that
allows tight integration with the underlying native
window system. The entire Eclipse Platform UI and
the tools that plug in to it use SWT for presenting
information to the user.

A perennial issue in widget toolkit design is the ten-
sion between portable toolkits and native window
system integration. The Java AWT (Abstract Window
Toolkit) provides low-level widgets such as lists, text
fields, and buttons, but no high-level widgets such
as trees or rich text. AWT widgets are implemented
directly with native widgets on all underlying win-
dow systems. Building a UI using AWT alone means
programming for the least common denominator of
all OS window systems. The Java Swing toolkit ad-
dresses this problem by emulating widgets like trees,
tables, and rich text. Swing also provides look-and-
feel emulation layers that attempt to make applica-
tions look like the underlying native window system.
However, the emulated widgets invariably lag behind
the look and feel of the native widgets, and the user
interaction with emulated widgets is usually differ-
ent enough to be noticeable, making it difficult to
build applications that compete head-on with appli-
cations developed specifically for a particular native
window system.

DES RIVIÈRES AND WIEGAND IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004376



The SWT addresses this issue by defining a common
API that is available across a number of supported
window systems. For each different native window
system, the SWT implementation uses native widgets
wherever possible; where no native widget is avail-
able, the SWT implementation provides a suitable em-
ulation. Common low-level widgets such as lists, text
fields, and buttons are implemented natively every-
where. But some generally useful higher-level wid-
gets may need to be emulated on some window sys-
tems. For example, the SWT toolbar widget is
implemented as a native toolbar widget on Win-
dows** and as an emulated widget on Motif**. This
strategy allows the SWT to maintain a consistent pro-
gramming model in all environments, while allow-
ing the underlying native window system�s look and
feel to shine through to the greatest extent possible.

The SWT also exposes native window system-specific
APIs in cases where a particular underlying native
window system provides a unique and significant fea-
ture that is unavailable on other window systems.
Windows ActiveX** is a good example of this. Win-
dow system-specific APIs are segregated into aptly
named packages to indicate that they are inherently
nonportable.

Tight integration with the underlying native window
system is not strictly a matter of look and feel. The
SWT also interacts with native desktop features, such
as the “drag and drop” function, and can use com-
ponents developed with OS component models, such
as Windows ActiveX controls. Internally, the SWT
implementation provides separate and distinct im-
plementations for each native window system. The
Java native libraries are completely different, with
each exposing the APIs specific to the underlying win-
dow system. (Contrast this to the Java AWT, which
locates window system-specific differences in the C
code implementation of a common set of Java na-
tive methods.) Because no special logic is buried in
the native methods, the SWT implementation is ex-
pressed entirely in Java code. Nevertheless, the Java
code looks familiar to the native OS developer. Any
Windows programmer would find the Java imple-
mentation of the SWT for Windows instantly famil-
iar because it consists of calls to the Windows API
that they already know from programming in C; like-
wise, for a Motif programmer looking at the SWT im-
plementation for Motif. This strategy greatly sim-
plifies implementing, debugging, and maintaining the
SWT because it allows all interesting development to
be done in the Java language. Of course, this is of
no direct concern for ordinary clients of the SWT be-

cause these native methods are completely hidden
behind the window system-independent SWT API.

JFace. JFace is a UI toolkit with classes for handling
many common UI programming tasks. JFace is win-
dow-system-independent in both its APIs and imple-
mentation and is designed to work with SWT with-
out hiding it. JFace includes the usual UI toolkit
components of image and font registries, dialog, pref-
erence, and wizard frameworks, and progress report-
ing for long-running operations. Two of its more in-
teresting features are actions and viewers.

The action mechanism allows user commands to be
defined independent of their exact whereabouts in
the UI. An action represents a command that can be
triggered by the user through a button, menu item,
or item in a tool bar. Each action knows its own key
UI properties (label, icon, tool tip, etc.), which are
used to construct appropriate widgets for present-
ing the action. This separation allows the same ac-
tion to be used in several places in the UI, making
it is easy to change where an action is presented in
the UI without having to change the code for the ac-
tion itself.

Viewers are model-based adapters for certain SWT
widgets. Viewers handle common behavior and pro-
vide semantics of a higher level than those available
from the SWT widgets. The standard viewers for lists,
trees, and tables support populating the viewer with
elements from the client�s domain and keeping the
widgets in synchronization with changes to that do-
main. The standard text viewer provides a document
model to the client and manages the conversion of
the document to the information required by the
SWT-styled text widget. Multiple viewers can be open
on the same model or document; all are updated au-
tomatically when the model or document changes
in any of them.

Eclipse workbench. Unlike SWT and JFace, which are
both general purpose UI toolkits, the workbench pro-
vides the UI personality of the Eclipse Platform and
supplies the structures for the interaction of the user
and the tools. Because of this central and defining
role, the workbench is synonymous with the Eclipse
Platform UI as a whole and with the main window
the user sees when the platform is running. The work-
bench API depends on the SWT API, and to a lesser
extent on the JFace API. The workbench implemen-
tation is built by using both SWT and JFace; Java AWT
and Swing are not used.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 DES RIVIÈRES AND WIEGAND 377



The Eclipse Platform UI paradigm is based on ed-
itors, views, and perspectives. From the user�s stand-
point, a workbench window consists visually of views
and editors (see Figure 1). Perspectives manifest
themselves in the selection and arrangements of ed-
itors and views visible on the screen. Editors allow
the user to open, edit, and save objects. They follow
an open-save-close life cycle much like file system
tools, but are more tightly integrated into the work-
bench. When active, an editor can contribute actions
to the workbench menus and tool bar. The platform
provides a standard editor for text resources; more
specific editors are supplied by other plug-ins.

Views provide information about an object that the
user is working with in the workbench. A view may
assist an editor by providing information about the
document being edited. For example, the standard
content outline view uses a JFace tree viewer to
present a structured outline for the content of the

active editor if one is available. A view may augment
other views by providing information about the cur-
rently selected object. For example, the standard
properties view presents the properties of the ob-
ject selected in another view. Views have a simpler
life cycle than editors: modifications made in a view
(such as changing a property value) are generally
saved immediately, and the changes are reflected im-
mediately in other related parts of the UI. The plat-
form provides several standard views; additional
views are supplied by other plug-ins.

A workbench window can have several separate per-
spectives, only one of which is visible at any given mo-
ment. Each perspective has its own views and ed-
itors that are arranged (tiled, stacked, or detached)
for presentation on the screen. Some may be hid-
den at any given moment. Several different types of
views and editors can be open at the same time within
a perspective. A perspective controls initial view vis-

Figure 3 Workbench user interface showing Java perspective

DES RIVIÈRES AND WIEGAND IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004378



ibility, layout, and action visibility. The user can
quickly switch perspectives to work on a different task
and can easily rearrange and customize a perspec-
tive to better suit a particular task. The platform pro-
vides standard perspectives for general resource nav-
igation, on-line help, and team support tasks.
Additional perspectives are supplied by other
plug-ins.

Tools integrate into this “editors, views, and perspec-
tives” UI paradigm in well-defined ways. The main
extension points allow tools to augment the work-
bench by adding new types of editors, new types of
views, and new perspectives, which arrange old and
new views to suit new user tasks. The platform’s stan-
dard views and editors are all included by use of these
mechanisms. Tools may also augment existing ed-
itors, views, and perspectives by adding new actions
to an existing view�s local menu and tool bar, adding
new actions to the workbench menu and tool bar
when an existing editor becomes active, adding new
actions to the pop-up content menu of an existing
view or editor, or adding new views, action sets, and
shortcuts to an existing perspective.

The platform takes care of all aspects of workbench
window and perspective management. Editors and
views are automatically instantiated as needed and
disposed of when no longer needed. The display la-
bels and icons for actions contributed by a tool are
listed in the plug-in manifest so that the workbench
can create menus and tool bars without activating
the contributing plug-ins. The workbench does not
activate the plug-in until the user attempts to use
the functionality that the plug-in provides.

After an editor or view becomes an active part of a
perspective, it can use workbench services for track-
ing activation and selection. The “part service” tracks
view and editor activation within the perspective, re-
porting activation and deactivation events to regis-
tered listeners. A view or editor can also register with
the selection service. The selection service feeds se-
lection change events to all parties that have regis-
tered interest. This is how, for example, the standard
properties view is notified of the domain object cur-
rently selected in the active editor or view.

UI integration. Tools written in the Java language
using the Eclipse Platform APIs achieve the highest
level of integration with the platform. At the other
extreme, external tools launched from within the
platform must open their own separate windows in
order to communicate with the user and must ac-

cess user data by means of the underlying file sys-
tem. Their integration is therefore very loose, espe-
cially at the UI level. In some environments, the
Eclipse Platform also supports levels of integration
between these extremes.

● The workbench has built-in support for embed-
ding any OLE (Object Linking and Embedding)
document as an editor (for Windows only). This
option provides tight UI integration.

● A plug-in tool can implement a container that
bridges the Eclipse Platform API to an ActiveX
control so that it can be used in an editor, view,
dialog, or wizard (for Windows only). The SWT pro-
vides the requisite low-level support. This option
provides tight UI integration.

● A plug-in tool can use AWT or Swing to open sep-
arate windows.22 This option provides loose UI in-
tegration but allows tight integration below the UI
level.

Team support. The Eclipse Platform allows a proj-
ect in the workspace to be placed under version and
configuration management with an associated team
repository. The platform has extension points and
a repository provider API that allow new kinds of
team repositories to be plugged in. The function pro-
vided by a particular team repository product invari-
ably affects the user�s workflow; for example, by add-
ing explicit steps for retrieving files from the
repository, for returning updated files to the repos-
itory, and for comparing different file versions. The
exact effect on the user�s workflow varies somewhat
for each kind of repository. Accordingly, the Eclipse
Platform takes a hands-off view and allows each team
repository provider to define its own workflow so that
users already familiar with the team repository prod-
uct can quickly learn to use it from within Eclipse.

The platform supplies basic hooks to allow a team
repository provider to intervene in certain operations
that manipulate resources in a project. These hooks
provide good support for both optimistic and pes-
simistic models. At the UI level, the platform sup-
plies placeholders for certain actions, preferences,
and properties, but leaves it to each repository pro-
vider to define these UI elements. There is also a sim-
ple, extendable configuration wizard that lets users
associate projects with repositories, which each re-
pository provider can extend with UI elements for
collecting information specific to that kind of
repository.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 DES RIVIÈRES AND WIEGAND 379



Multiple team repository providers can coexist
peacefully within the platform. The Eclipse Platform
includes support for CVS (Concurrent Versions Sys-
tem) repositories accessed via either pserver or SSH
(Secure Shell) protocols.

Help mechanism. The Eclipse Platform help mech-
anism allows tools to define and contribute documen-
tation to one or more online guides. For example,
a tool usually contributes help documentation to a
user guide and API documentation (if it has any) to
a separate programmer�s guide. Raw content is con-
tributed as HTML files. The facilities for arranging
the raw content into online guides with suitable nav-
igation structures are expressed separately in XML
files. This separation allows pre-existing HTML doc-
umentation to be incorporated directly into online
books without the need to edit or rewrite it.

The navigation structure presents the contents of the
guides as a tree of topics. Each topic can have a link
to a raw content page. A single book may have mul-
tiple alternate lists of top-level topics allowing some
or all of the same information to be presented in
completely different organizations; for example, it
may be organized by task or by tool.

The XML navigation files and HTML content files are
stored in a plug-in�s root directory or subdirectories.
Small tools usually put their help documentation in
the same plug-in as the code. Large tools often have
separate help plug-ins. The platform uses its own in-
ternal documentation server to provide the actual
Web pages from within the document web. This cus-
tom server allows the platform to resolve special in-
ter-plug-in links and extract HTML pages from ZIP
archives.

When a help system is organized, the creation of a
full topic tree is only possible when the set of tools
to be documented is closed. With the Eclipse Plat-
form, the set of tools is open-ended, and conse-
quently the structure of the help documentation
needs to be modular. The platform help mechanism
allows tools to contribute both raw content and sets
of topics, and to define insertion points to indicate
where to insert its topics into a pre-existing topic tree.

Just the foundation. As described above, the Eclipse
Platform provides a nucleus of generic building
blocks and APIs like the workspace and the work-
bench, and various extension points through which
new functionality can be integrated. Through these
extension points, tools written as separate plug-ins

can extend the Eclipse Platform. The user is pre-
sented with an IDE that is customized by the set of
available tool plug-ins. Tools may also define new
extension points and APIs of their own and thereby
serve as building blocks and integration points for
yet other tools.

The tools plugged in to the platform supply the spe-
cific capabilities that make it suitable for develop-
ing certain kinds of applications. The Eclipse proj-
ect itself provides a number of optional components
that sit atop the Eclipse Platform. The most exten-
sive of these are the Java development tools (JDT),
which add the capabilities of a full-featured Java IDE
to the Eclipse Platform. Figure 3 shows what the
workbench normally looks like when the user is writ-
ing a Java program. Comparing Figure 3 to Figure
1 gives a sense of how JDT integrates its capabilities
into the workbench.

The JDT is implemented by a group of plug-ins, with
the UI in one plug-in and the non-UI infrastructure
in a separate core plug-in. This separation of UI and
non-UI code allows the JDT core infrastructure to be
used in GUI-less configurations of the Eclipse Plat-
form, and by other GUI tools that incorporate Java
capabilities but do not need the JDT UI. The Java UI
plug-in makes extensive use of workbench extension
points to contribute special editors, views, perspec-
tives, and actions that allow the user to work with
Java programs in Java-specific terms. The Java com-
piler and underlying Java structure model can be in-
voked programmatically from other tools through
the Java model API defined by the JDT core plug-in.
Both the JDT core and UI plug-ins also declare ex-
tension points so that other tools can extend them
in predefined ways.

Eclipse in practice

The Eclipse Platform provides a solid technical foun-
dation for integrated tools that support diverse ap-
plication domains across the full development life
cycle. Yet a technically sound foundation alone is
no assurance of success. In this section, we look at
how the Eclipse Platform has gained acceptance in
practice, ensuring that useful Eclipse-based tools are
built.

Eclipse open source project. One key factor in the
Eclipse Platform�s success is that it is run as an open
source project. The www.eclipse.org Web site, the
public base of operations, has the following features:

DES RIVIÈRES AND WIEGAND IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004380



● Free download area—Offers current releases of the
Eclipse Platform in a ready-to-use (binary) form.

● Newsgroups—Provide general discussion about
Eclipse. These lists are open to anyone and are a
primary resource for help and advice for anyone
using the Eclipse Platform.

● Source code repository—The source code for the
Eclipse Platform is in a CVS repository. Anyone
can browse the contents and revision history of any
source file. There are also build scripts that allow
anyone to recompile and re-create the Eclipse
Platform from the source code.

● Bug-tracking database—There is a Bugzilla-based
bug database for tracking defects and problems
with Eclipse Platform releases. Users can use the
database to discover known problems or to report
a new bug they have found (or request a new fea-
ture they would like).

● Development plans, proposals, and developer mail-
ing lists—Development plans and proposals are
posted on the Web site, and there are developer
mailing lists for communication between develop-
ers working on the Eclipse Platform. Although this
information is primarily of interest to the Eclipse
development team (which is distributed around the
world), it is also available to anyone interested in
following how the next Eclipse Platform release
is taking shape.

Eclipse source materials are made available under
the Common Public License (CPL), one of the li-
censes approved by the Open Source Initiative (OSI).
This royalty-free license allows anyone to use and
redistribute Eclipse for commercial or non-commer-
cial purposes.

The Eclipse code base is developed and maintained
by a technical meritocracy. A developer with a proven
record of valuable contributions is rewarded with in-
creased responsibility and the opportunity for fur-
ther contributions. Interested developers can con-
tribute to the project without needing to be an
employee of any particular company; rather, their
ability to contribute is based on their skills and the
technical merits of their contributions. Key contrib-
utors are visible and recognized by the community.
Committers are the subset of developers responsi-
ble for the code and are the only ones allowed to
create new versions in the repository. Committers
are typically full-time employees paid by their com-
panies to work on Eclipse.

The Eclipse project management committee (PMC)
provides technical leadership. The PMC collects com-

munity input and requirements, develops release
plans, and generally coordinates activity across the
range of platform subcomponents.

The development process is iterative and engages
the wider Eclipse community. The release schedule
is partitioned into milestone cycles of fixed duration
(currently six weeks). Each milestone cycle is like a
small release cycle: it includes planning, develop-
ment, testing, and a milestone delivery. The specific
steps in each cycle evolve based on input from the
community. Each milestone is shipped with a descrip-
tion of new and noteworthy features in an effort to
draw the community�s attention to the most recent
milestone and to encourage them to use it. By pro-
viding milestones at regular intervals, the Eclipse
Platform is effectively in continuous beta. This sets
up a positive feedback loop that further encourages
community participation and growth.

Eclipse consortium. The Eclipse open source proj-
ect is backed by the Eclipse consortium, a group of
companies that have made a commitment to releas-
ing Eclipse Platform-compatible offerings and to sup-
porting the community of users, researchers, and de-
velopers. The consortium has steadily expanded from
nine founding members in November 2001 to over
40 in the following two years. IBM (a founding mem-
ber of the Eclipse consortium) originally developed
the Eclipse Platform and contributed it to the open
source project in November 2001. The team that
originally developed the Eclipse Platform became
the project�s initial set of committers. Besides the
Eclipse Platform, the seed contribution included JDT
and specialized tools needed to develop Eclipse plug-
ins. Right from the start, the Eclipse open source
project was able to be entirely self-sustaining; no pro-
prietary tool or “special sauce” is required to develop
and maintain Eclipse or to develop new plug-ins for
Eclipse.

The Eclipse consortium supports other Eclipse-based
open source development efforts at www.eclipse.org.
The Eclipse tools project fosters the creation of a
wide variety of tools and frameworks for the Eclipse
Platform, including a graphical editor framework
(GEF subproject), a modeling framework (EMF
[Eclipse Modeling Framework] subproject), C/C��
development tools (CDT subproject), and automated
software quality tools (Hyades subproject). The
Eclipse technology project provides channels for
open source developers, researchers, academics, and
educators to participate in the long-term evolution
of Eclipse (and beyond). Current research efforts in-

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 DES RIVIÈRES AND WIEGAND 381



clude aspect-oriented software development (As-
pectJ and AJDT subprojects), alternative Eclipse run-
times (Equinox project), a collaboration framework
(Koi subproject), advanced software configuration
management (Stellation subproject), XML Schema
tools (XSD [XML Schema Definition language] sub-
project), and tools for model-driven software devel-
opment (GMT [Generative Model Transformer]
subproject).

Eclipse community. The Eclipse community is re-
markably diverse. We describe some of the constit-
uencies to explain why Eclipse appeals to them and
to see how their participation enriches the Eclipse
community.

A large, ready-made audience for Eclipse consists
of Java developers who need a Java IDE to help them
develop Java programs. Java developers can quickly
have a high quality, ready-to-use, Java IDE for the
price of a free download. Naturally, this is a big at-
traction in the Java community, including computer
science students. These Eclipse users are a valuable
source of bug reports, new feature requests, news-
group traffic (both questions and answers), and beta
testers.

The transition from Java developer to Eclipse plug-in
developer is relatively smooth. Eclipse is written in
the Java language, and the standard Eclipse down-
load contains the specialized tools needed for de-
veloping plug-ins. A segment of these Java devel-
opers go on to “scratch their own itch” and develop
new tools in the form of Eclipse plug-ins. These tools
are often made available by their owners to the gen-
eral Eclipse community in one form or another. An-
other segment of these Java developers go on to ap-
ply their Java skills to tracking down and fixing bugs
in Eclipse. Again, the built-in PDE support makes it
easy to work with the source code of the plug-ins that
make up Eclipse, and to produce patches to attach
to the bug report for later consideration by the
Eclipse committer responsible for the affected com-
ponent. Individual developers who are knowledge-
able in the ways of building Eclipse plug-ins are an
important resource.

Many software engineering research projects can
benefit from building atop a ready-made, commer-
cial quality, full source code base such as that pro-
vided by the Eclipse Platform, allowing the research-
ers to focus their efforts on their area of expertise
and interest. On the commercial side, for many com-
panies with IDE products, the IDE is just the matrix

in which to embed the unique special-purpose tools
that the company is offering. Building the matrix is
onerous because it involves writing the frameworks
and tool infrastructure that provide services common
to all IDEs. The Eclipse Platform provides these com-
mon services in a language-neutral way. Using the
Eclipse Platform instead of investing in creating (and
maintaining) their own comparable IDE infrastruc-
ture lets companies focus their efforts on providing
the essential tools that their customers need to work
with the companies’ main products. For example, IBM
WebSphere Studio Application Developer is an
Eclipse-based IDE with special tools for creating and
debugging J2EE applications; Hewlett-Packard pro-
vides an Internet usage manager component devel-
opment environment based on Eclipse; and QNX
Momentics**23 is an Eclipse-based development
suite for the Neutrino** real-time operating system.
Comprehensive IDE products built atop the Eclipse
Platform make salient issues of UI complexity and
scalability; in time, this pressure allows other devel-
opers to follow with increased confidence that the
edifice will hold up under the load of a large num-
ber of plug-ins.

The companies that produce Eclipse-based IDE prod-
ucts also open doors for ISVs to sell their unique tools
as Eclipse plug-ins augmenting the IDE product that
the customer has already purchased. In some cases,
this allows an add-on tool writer to sell the same
plug-in for use in several different IDE products. For
example, Instantiations CodePro Studio24 provides
additional tools for Java development that augment
IBM WebSphere Studio or any Eclipse-based IDE that
also includes JDT. By addressing customer needs not
satisfied by the Eclipse-based IDE product, ISVs en-
hance the value of the product in addition to finding
a market for their own tools. Thus, each of the differ-
ent constituencies has its own reasons for using Eclipse,
and each gives back to the Eclipse community ei-
ther directly or indirectly. Like Eclipse itself constit-
uencies are open-ended: new constituencies arise
naturally and push Eclipse in hitherto unexplored
directions. For instance, a number of parties would
like to use the Eclipse Platform to build applications
other than IDEs. Indeed, a number of them have mod-
ified the Eclipse Platform to meet their needs in this
area. While this was not an original design goal for
the Eclipse Platform, it is equally true that much of
the platform is not particularly IDE-specific. One of
the challenges for the next (3.0) release of the Eclipse
Platform is to find a way to directly satisfy this new
constituency while continuing to meet the expecta-
tions and needs of the existing Eclipse community.

DES RIVIÈRES AND WIEGAND IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004382



Conclusion
The rosier future that customers are hoping for is
one where they are more effective at developing their
software because they have a wide spectrum of well-
integrated tools from diverse tool vendors that sup-
port all aspects of the software development life cy-
cle. The Eclipse Platform is a technical solution
designed to enable such a future. Given the contin-
ued active participation of a diverse and growing
community of developers who want Eclipse to evolve
to meet their needs, there is reason to hope that the
customers will get what they are hoping for.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Borland International,
Inc. Corporation, Sun Microsystems, Inc., Borland Software Cor-
poration, Microsoft Corporation, Rational Corporation, JetBrains
S. R. O. Corporation, Oracle Corporation, Linus Torvalds, The
Open Group, Object Management Group, or QNX Software Sys-
tems Ltd. Corporation.

Cited references and notes

1. J. G. Kemeny and T. E. Kurtz, BASIC Instruction Manual,
Dartmouth College, Hanover NH (June 1964).

2. A. D. Falkoff and K.E. Iverson, APL\360, IBM Corporation
(November 1966).

3. R. M. Stallman, “Emacs, the Customizable, Extensible Dis-
play Editor,” Proceedings of the ACM SIGPLAN SIGOA Sym-
posium on Text Manipulation, ACM, New York (1981), pp. 147–
160, http://www.gnu.org/software/emacs/emacs-paper.html.

4. Turbo Pascal v1.0 (IBM PC Version), Borland Software Cor-
poration, Scotts Valley, CA (Nov. 1983).

5. W. Teitelman and L. Masinter, “The Interlisp Programming
Environment,” Computer 14, No. 4, 25–34 (April 1981).

6. A. Goldberg and D. Robson, Smalltalk-80: The Language and
Its Implementation, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA (1983).

7. R. P. Gabriel, N. Bourbaki, M. Devin, P. Dussud, D. N. Gray,
and H. B. Sexton, “Foundation for a C�� Programming Envi-
ronment,” Proceedings of C�� at Work-90, ACM, New York
(September 1990), http://www.dreamsongs.com/NewFiles/
Energize.pdf.

8. Borland JBuilder 1.0, Borland Software Corporation, Scotts
Valley, CA (1997), http://www.borland.com/jbuilder/.

9. Symantec Visual Café 1.0, Symantec Corporation, Cupertino,
CA (1997), http://www.symantec.com/.

10. Microsoft Visual J�� 1.0, Microsoft Corporation, Redmond,
WA (1997), http://www.microsoft.com.

11. IBM VisualAge for Java 1.0, IBM Corporation, NY (1997),
http://www.software.ibm.com/ad/vajava.

12. S. P. Reiss, “Software tools and environments,” ACM Com-
puting Surveys (CSUR) 28, No. 1, 281–284 (March 1996).

13. Rational Rose 2000, Rational Software Corporation, Cuper-
tino, CA (2000), http://www.rational.com/products/rose/
index.jsp.

14. Introduction to IDEA 3.0 Plug-Ins, JetBrains Inc., Prague,
Czech Republic (2003), http://www.intellij.com/docs/PlugIns.
pdf.

15. Oracle9i JDeveloper, Oracle Corporation, Redwood Shores,
CA (2001), http://otn.oracle.com/products/jdev/index.html.

16. NetBeans IDE, www.netbeans.org (2000), http://www.
netbeans.org/products/ide/.

17. Sun ONE Studio, Sun Microsystems, Mountain View, CA
(2003), http://wwws.sun.com/software/sundev/.

18. Microsoft Visual Studio: Extending Visual Studio, Microsoft
Corporation, Redmond, WA (2003), http://msdn.microsoft.
com/vstudio/using/building/addin/default.aspx.

19. This section contains material adapted from Eclipse Platform
Technical Overview, which appears on the www.eclipse.org
Web site at http://eclipse.org/whitepapers/eclipse-overview.
pdf.

20. Eclipse Platform 1.0, www.eclipse.org (November 2001), http://
eclipse.org.

21. IBM WebSphere Studio Application Developer Version 4.0, IBM
Corporation, NY (2001), http://www.ibm.com/websphere/
eclipse.

22. In Version 2.1 of Eclipse (released in March 2003), this works
for Windows but not for Linux.

23. QNX Momentics, QNX Software Systems Ltd., Ottawa, Can-
ada (2003), http://www.qnx.com/products/ps_momentics/.

24. Instantiations CodePro Studio, Instantiations Inc., Portland,
OR (2003), http://www.instantiations.com/codepro/default.
htm.

Accepted for publication December 5, 2003.

Jim des Rivières IBM Software Group, 2670 Queensview Drive,
Ottawa, Ontario K2B 8K1, (jim_des_rivieres@ca.ibm.com) is one
of the architects of the Eclipse Platform and JDT infrastructure,
with a special focus on the overall design of the Eclipse APIs.
Prior to Eclipse, Jim was involved with IBM VisualAge/Smalltalk
and was an architect of IBM VisualAge Micro Edition. Prior to
joining OTI (Object Technology International) in 1993, Jim was
at Xerox PARC where he co-authored the book “The Art of the
Metaobject Protocol.” His interests include API design and evo-
lution, programming languages, and digital photography. Jim is
with IBM OTI Labs in Ottawa, Canada.

John Wiegand IBM Software Group, 15350 S.W. Koll Parkway,
Beaverton, Oregon, 97006, (john_wiegand@us.ibm.com) is the prin-
cipal architect for the Eclipse Platform infrastructure. John played
a central role in the development of IBM VisualAge/Java, IBM
VisualAge Micro Edition, and Eclipse. His interests are in the
areas of performance, scalability, compilers, and other challeng-
ing issues. John is the Eclipse project PMC lead and also leads
the Eclipse Platform and PDE subprojects. John is with IBM OTI
Labs in Beaverton, Oregon.

IBM SYSTEMS JOURNAL, VOL 43, NO 2, 2004 DES RIVIÈRES AND WIEGAND 383


